
MECHANICAL

SUMMARY

A simple algorithm for generating terminal strings from a context-free
phrase structure grammar is described, incorporating provision for the
weighting of various possible constructions. A description of a program
using this algorithm is given, together with sorne suggestions for extending
its usefulness.

INTRODUCTION

Much work has been done in recent years on the syntactic analysis of ter­
minal strings in context-free, phrase structure languages. A resumé of thi,s
work may be found in the recent papers of Brasseur and Cohen (Brasseur
and Cohen, 1965, 1 and 2), to which the reader is referred for a fuller
bibliography. In this paper we shaH consider the converse (and much
easier) problem of generating terminal strings from a given grammar. A
program for doing this has a number of possible applications; the genera­
tion of random, syntactically correct programs can be used for checking
out sections of a compiler; the program can be used for evaluating a

35

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

grammar of a naturallanguage and even for producing plausible anagrams.

Loeckx and Wodon, in their report (Loeckx and Wodon, 1965), describe a
sophisticated program, based on the algorithm given in Chomsky and
Schützenberger, 1963, for generating all the terminal strings of a context­
free language, together with their ambiguities (i.e. the number of distinct
structural descriptions assigned by the grammar, to each·string). Their pro­
gram used list-processing techniques and the authors state that, although
the program is a useful tool for investigating the properties of formallan­
gtwges, it was written as an exercise in the techniques they employ and so
was in no sense optimized in core space used or computing time taken.
The process which we shall describe is mùch less sophisticated but is easily
programmed and seems to be efficient in the use of core space and compu­
ting time. Loeckx and Wodon's program will only deal with grammars
with just a single non-terminal symbol; the one described here is not sub­
ject to this restriction. It does not, however, necessarily generate all the
terminal strings, but only a random selection of them, and it does not
assign any ambiguity to them. It is, therefore, perhaps, less useful for the
investigation of formai languages, but more useful for the other applica­
tions referred to above.

THE BASIC ALGORITHM

The basic algorithm which we have used for generating terminal strings is
the simple recursive procedure implied by the form of a phrase structure
grammar. The procedure takes as parameter a string Q of Itlixed terminal
and non-terminal symbols, and is first entered with parameter S, the defi­
ned initial symbol. The procedure examines the left-most symbol, A, of Q;

36

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

if Ais terminal then it is output, deleted from Q to produce a new string
Q', and the procedure re-entered with parameter Q'. If Ais non-terminal
then it is replaced in the string Q by the right-hand side of any production
having left-hand side A, and the procedure is re-entered with this new
string as parameter; the procedure terminates when the value of the para­
meter on entry is the empty string. We may cali this process 'left-to-right'
generation; it is equally possible to generate from right-to-left, but in this
case the output symbols must be placed on a stack and output from there
when the procedure has terminated.

It is clear that the algorithm as described above amounts to no more than
simulating the action of the push-down store automation defined by the
grammar. However, at one critical point, the algorithm is imprecise; how
do we choose which production to apply at any given opportunity ?

WEIGHTING

The production is chosen using a pseudo-random number generator, which
produces pseudo-random numbers with a rectangular distribution over the
range [0,1]. The simplest way of doing this is to choose each of n alterna­
tives with probability 1/n, i.e. choose the rth alternative if the output, x,
of the random number generator lies in the range (r-1)/n<, x< r/n.

For many purposes, however, it is convenient to be able to weight cons­
tructions; this is done in the following way. The syntax (which is generally
presented in Backus Normal Form) consists of mles either of the form

37

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

where A is a non-terminal symbol and the Ci are strings, or of the form

where ~\ are integers. In the former case, all constructions are taken with
equal probability; in the latter case the ith construction is taken with pro-
bability n

À/ J.: Àj
j==l

The utility of this deviee can be seen from the following example. Suppose
we have the construction

(expression) ::=(identifier> \<identifier)(operator) <expression);

if the two constructions are taken with equal probability then half the
expressions produced will consist of a single identifier. If, on the other
hand, the constructions are weighted in the following manm~r

(expression)::= l,(identifier)IS,(identifier) (operator) (expression>

then a more realistic output will be obtained in which only one sixth of
the expressions are single identifiers.

THE PROGRAM

The program based on this algorithm was written, in machine code, for

313

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

the Titan computer in the University Mathematical Laboratory, Cambrid­
ge; the Titan is a fast computer with 128K of 48-bit core, with half-words
addressable by hardware. Normal input is on 7-track paper tape produced
by Flexowriters.

The program falls into two main parts and a small output routine. The
first part of the program reads the syntax and stores it in a suitable form.
The syntax is presented in Backus Normal Form, together with a number
of extra conventions :

(1) AU productions having the same left-hand side must he amalga­
mated; if this is not done, only the last one is used.

(2) Weighting is recognized as described above.
(3) If a non-terminal symbol has occurred in the right-hand sides of

the productions, but has not been a left-hand side by the time
the whole system has been read, it is assumed to stand for itself
e.g. if the following production has occurred

< comparison operator) :: = <<. > 1 (l/
then the productions

<<) ::= < and < >> ::=)
are added to the syntax if no other productions with these left­
hand sides has been found. This provides a means of using the
metalinguistic symbols as elements of the alphabet.

The whole syntax is terminated by a solidus which is followed by the
initial symbol from which terminal strings are to be produced together
with an integer specifying how many terminal strings are -required. Thus
the complete input to the program for a simple syntax might appear as
follows :

<var>

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

<.,Hld op) ::'~ + /-
(lerm> ::-' 1, (var> /2, (var> (add op) (term>
(exfJ) ::~,3, ((term)) ((term>)) 1, ((term>) 1 ((var>) 11,(term)
(slatcrnent) ::== (var> ::=<exp)
1

(statcment >
5

REFERENCES

l. M. Brasseur and J. Cohen : 'Algorithmes d'analyse syntaxique pour lan­
gages 'context-free', (Parts 1 and 11), Chiffres, 1965, Nos. 2 and 3.

2. J. Loeckx and P.-1. Wodon : 'Mechanical generation of a context-free
language hy list processing techniques'. Report R27 of the Research
Laboratory of the Manufacture Belgique de Lampes et de Matériel Elec­
tronique, Brussells, 1965.

M.F. BOTT
University of Cambridge

40

Extrait de la Revue (R.E.L.O.)
IV, 1 à 4, 1968. C.I.P.L. - Université de Liège - Tous droits réservés.

